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Abstract-A method is presented to study the three-dimensional quasi-static response of a multi­
layered poroelastic half-space with compressible constituents. The system under consideration
consists of N layers of different thickness and material properties overlying a homogeneous half­
space. Fourier expansion, Laplace transforms and Hankel transforms with respect to the cir­
cumferential, time and radial coordinates, respectively, are used in the formulation. Laplace-Hankel
transforms of displacements and pore pressure at layer interfaces are considered as the basic
unknowns. Exact stiffness matrices describing the relationship between generalized displacement
and force vectors of a finite layer and a half-space are derived explicitly in the transform space. The
global stiffness matrix of a layered system is assembled by considering the continuity of tractions
and fluid flow at layer interfaces. The time histories of displacements, stresses and pore pressure are
obtained by solving the stiffness equation system for discrete values of Laplace and Hankel transform
parameters, and using numerical quadrature schemes for Laplace and Hankel transform inversions.
Selected numerical results for different layered systems are presented to portray the influence of
layering and poroelastic material properties. The advantage of the present method is that for an N­
layered system, it yields a numerically stable symmetric stiffness matrix of order 4N x 4N when
compared to the unsymmetric and numerically unstable coefficient matrix of order 8N x 8N associ­
ated with the conventional method based on the determination of layer arbitrary coefficients.

INTRODUCTION

The theory ofporoelasticity has its origin in the one-dimensional theory ofsoil consolidation
proposed by Terzaghi (1923). Biot (1941) developed a general theory of three-dimensional
consolidation of fluid-saturated porous elastic solids by adopting Terzaghi's concepts.
Later, Rice and Cleary (1976) reformulated Biot's work in terms of material constants
which are more easily identifiable. Over the last forty years, Biot's theory has been the basis
for analysis of a variety of geotechnical and geophysical problems related to poroelastic
regions, e.g. soil consolidation (McNamee and Gibson, 1960; Schiffman and Fungaroli,
1965; Rajapakse and Senjuntichai, 1993), borehole problems (Detournay and Cheng, 1988 ;
Rajapakse, 1993), hydraulic fracture (Rice and Cleary, 1976; Detournay et aI., 1989) and
earth faulting (Rice and Cleary, 1976; Rudnicki, 1986, 1987).

An important class of problems encountered in geomechanics, energy resource explo­
rations, biomechanics, etc. is concerned with the study of the mechanical response of
multilayered media since it represents a closer approximation to most physical systems such
as natural soil profiles, which are normally layered in character. Analytical solutions to
two- and three-layered ideal elastic media have been presented in the past by applying
integral transform techniques (Burmister, 1945; Chan et ai., 1974). The use of numerical
quadrature in the evaluation ofelastic fields is unavoidable unless approximations are made
in the evaluation of semi-infinite integrals associated with the inverse integral transforms.
A finite element approach combined with the far-field behaviour of elastic fields has been
proposed to study the response of a layered ideal elastic half-space (Muki and Dong, 1980;
Rajapakse and Karasudhi, 1985). An approach which is quite similar to the classical finite
element method has been presented by Waas (1972) to analyze layered ideal elastic media.
In this approach, a multi-layered half-space is divided into a number of thin layers within
which the displacements have prescribed variations in the vertical direction (e.g. linear).
An approximate stiffness matrix is derived for each layer on the basis of the assumed
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displ<lCel1leiil repr~'senLllli.)il and a global stiffness matrix of thc systcm is obtained by
asscmbling layer stillness llwtnccs. Furthcr approximations are required in this scheme to
include an undcrlying hair-space. The approximate scheme ofWaas (1972) has been used
in thc past to studv sliltic and dynamic responses of layered ideal elastic materials (Kausel
and Peck. 19K2: Kallsel 'lnd Scale. 1987).

The conventional method to evaluate the response of a system with N layers, while
rigorously satisfying thc governing equations, is based on the determination of arbitrary
I'unctions corresponding to cach layer numerically (Thomson. 1950; Haskell, 1953). In this
approach. an,dytical genet'al solutions 01' each layer expressed in terms of a set of arbitrary
t'unctions in Fourier or Hankeltransl'orm space are used to establish a linear simultaneous
cquation ';yslcm with arbitrary I'unctions as the unknowns by considering the boundary
conditions at top surlacc and continuity conditions at layer interfaces. The equation system
is solvcd numerically 1'01' discrete values of the integral transform parameter and the
rc~;ponse is computed hy applying numerical quadrature to evaluate the inverse transform
intcgrals. Vardoulakis and Harnpananapanich (19K6) used the above approach to evaluate
the qu'lsi··stalic responsc ofa layered poroelastic medium with incompressible constituents.
The incompressibility or constituents is an approximation which is valid mainly for soils
but no! for porous rocks. The conventional scheme based on the determination of layer
arbitrary cnellicieJ1ts results in an unsymmetric matrix of order (8N+4) x (8N+4) for a
layered poroclastic systcm as shown in Fig. I which needs to be repetitively solved in the
nUll1erical evaluation or the response. The numerical effort involved in the analysis is
substallti;il!y high due to the presence of the Laplace inversion in addition to the Fourier
or Hankel transform inversion (Vardoulakis and Harnpattanapanieh, 1986). In addition,
the clements of the codJicient matrix involve both negative and positive exponentials of the
FourH..TILl11kel tr;ll!sforlll parameter which results in numerically ill-conditioned matrices
lor increasing valul" 01' the transform parameter. These ill-conditioned matrices yield
spurious conlributilllh in the numerical evaluation of the response.



Quasi-statics of a multi-layered poroelastic medium

In recent years, exact stiffness matrix methods have been presen ted to st udy I he
response of multi-layered media. Booker and Small (1987) considered layered soil con­
solidation problems by using a stiffness matrix method based on analytical solutions lor <l

medium with incompressible constituents. Choi and Thangjitham (1991), Rajapakse and
Wang (1992) and Wang and Rajapakse (1994) considered static and dynamic stress analy sic,
of layered anisotropic elastic media by using exact stiffness matrix schemes. This paper is ~I

further development of three-dimensional solutions presented by Rajapakse and Sen­
juntichai (1993) for a homogeneous poroelastic medium with compressible constituents.
The main objective is to develop a computationally efficient and numerically stablc eX,ict
stiffness matrix scheme to evaluate the quasi-static response of a multi-layered poroelastic
medium with compressible constituents. In the present approach, the Laplace Hankel
transforms of displacements and pore pressure at layer interfaces arc considered as the
basic unknowns. The three-dimensional general solutions given by Rajapakse and Sen­
juntichai (1993) are used to construct explicitly an 8 x 8 symmetric stiflness matrix "hieh
describes the relationship between generalized displacement and forcc vectors of a laycr.
For an underlying half.-space, a 4 x 4 exact stiffness matrix is also derived by using the
general solutions. The global stiffness matrix of a multi-layered half-space is assembled 11\
considering the continuity conditions of tractions and fluid flow at the interface betwel~n

the adjacent layers. The numerical solution of the global stiflness equation for discrete va lues
of Hankel and Laplace transform parameters results in the Laplace· Hankel lransronns 01'

displacements and pore pressure at layer interfaces. Thereafter, time domain solutions I'llI'

displacements, stresses, pore pressure and fluid discharge are computed by applying a
numerical scheme for Laplace inversion and direct numerical quadrature for Hankel Inll1s
form inversion. The present method has high numerical etliciency due to the raet that it
involves the solution of a banded symmetric stiflness matrix of nearly one-half the si/e or
the unsymmetric coefficient matrix corresponding to the conventional scheme based Oil till'
determination oflayer arbitrary coefficients. In addition, the elements or the stiflness ma trix
involve only numerically stable negative exponential terms of Hankel transform parameters
resulting in well-conditioned matrices.

BASIC EQUATIONS AND GENERAL SOLUTIONS

The constitutive relations of a homogeneous poroelastic material with comprcssiblc
constituents can be expressed with respect to a conventional cylindrical polar coordin,ltc
system (r,O,z) by using the standard indicial notation as (Rice and Cleary, 1976)

i,j = r, O,~. ( 1)

In the above equation, (Jij is the total stress component of the bulk material; I;" and I: lin:

the strain component and the dilatation of the solid matrix. respectivcly: jJ is the cxccss
pore fluid pressure (suction is considered negative); fl, v and v" arc the shear ll1oduius,
drained and undrained Poisson's ratios, respectively; B is the Skempton's pore pressure
coefficient (Skempton, 1954) and (51) is the Kronecker delta. It is noted that 0 ~ B 0( I and
v ~ v" ~ 0.5 for all poroelastic materials, The limiting cases of a poroelaslic solid wi I h
incompressible constituents and a dry elastic material are obtaincd when \'" ~- 0.5 and
B = I, and B ~ 0, respectively. The excess pore fluid pressure can be expressed as

2IlB (1+v,,) 2IlB2 (1-2v)(l+v ,J'v
p = - ------1:+ -------------l,

3(1 - 21',,) 9( 1- 2v,,) (v" - v)
(2)

where' is the variation of fluid volume per unit reference volume. Let lI i and \\'. denote the
average displacement of the solid matrix and the fluid displacement relative to thc stliid
matrix, respectively, in the i-direction (i = r, 0, z). Then,
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(3)

where qi is the fluid discharge in the i-direction defined as

i = r,z
ap

and qo = - K r ae . (4)

In addition, K is the coefficient of permeability defined as the ratio between the intrinsic
permeability of the medium and the viscosity of the constituents.

Application of the Fourier expansion with respect to the circumferential coordinate e
for displacements U i and pore pressure P results in

where

,X! :Xl

u;(r,e,z,t) = I U;m(r,z,t)f(e)- I Uim(r,z,t)1'(e)
m=O m=O

oc oc

p(r,e,z,t) = I Pm(r,z,t)cosme+ I Pm(r,z,t)sinme
m=O m=O

{

COS me, i of- e,
fee) =. .'

smme, 1= e

(5)

(6)

(7)

In eqns (5) and (6), Uim andpm are symmetric components and Uim and Pm are anti-symmetric
components corresponding to the mth harmonic. l' (e) denotes the derivative of f(e) with
respect to the circumferential coordinate e. In the subsequent analysis, only symmetric
components are considered without loss of generality.

The Laplace-Hankel transform (mth order) of function ¢(r, z, t) with respect to the
variables t and r, respectively, is defined by (Sneddon, 1951)

(8)

In eqn (8), sand ( denote the Laplace and Hankel transform parameters respectively, and
Jm denotes the Bessel function of the first kind of order m. The inverse relationship is given
by

(9)

where IX is greater than the real part of all singularities of £'m[¢(r, z, t)] and i = j=1.
It can be shown that general solutions for the mth harmonic of solid and fluid dis­

placements, pore pressure and stresses in the Laplace~Hankeitransform space (Rajapakse
and Senjuntichai, 1993) can be expressed in the following matrix form

where

v((,Z,s) = R((,z,s)C((,s)

f((,z,s) = S((,Z,s)C((,s)

(10)

(11)
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V(¢,z,s) = <v,(¢,Z,S»T, i = 1,2,3,4

f(~,z,s) = <.{;(~,Z,S»T, i= 1,2,3,4

j~ (¢, z, s) = Yfm(rr zzlt,)

f4(~'Z,S) = Yfm(wzm )
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(12)

(13)

( 14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

and the matrices R( ~, z, s) and S(¢, z, s) are defined in the Appendix. The arbitrary functions
Am(¢, s), Bm(¢, s), ... ,Hm(~,s) appearing in C(~, s) are to be determined by employing
appropriate boundary and/or continuity conditions. In the ensuing sections, a com­
putationally efficient exact stiffness matrix scheme is presented to study the quasi-static
response of a multi-layered poroelastic half-space as an effective alternative to the con­
ventional method based on the determination of the layer arbitrary coefficient vector C(¢, s).

STIFFNESS MATRICES

A multi-layered system with a total of N poroelastic layers overlying a poroelastic
half-space is considered in this section. Layers and interfaces are numbered as shown in
Fig. 1. A superscript "n" is used to denote quantities associated with the nth layer
(n = 1,2, ... , N). For an nth layer, the following relationships can be established by using
eqns (10) and (11)

(23)

(24)

where

(25)

(26)

In eqns (23)-(26), U(It) denotes a vector of generalized coordinates for the nth layer whose
elements are related to the Laplace-Hankel transforms of the mth Fourier harmonic of
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displacements and pore pressure of the top and bottom surfaces of the nth layer. Similarly,
F(n) denotes a generalized force vector whose elements are related to the Laplace-Hankel
transforms of the mth Fourier harmonic of tractions and fluid displacements of the top and
bottom surfaces of the nth layer. The matrices Rln) and SIn) in eqns (23) and (24) are identical
to Rand S defined in the Appendix except that the material properties of the nth layer are
used in the definition and Z = Zn and Zn+ I' The vector C tn) is the arbitrary coefficients vector
corresponding to the nth layer.

Equation (23) can be inverted to express CUI) in terms of Vln) and the substitution in
eqn (24) yields

F(n) = K(n)v(n) , n = 1,2, ... ,N (27)

where KIn) can be considered as an exact stiffness matrix in the Laplace-Hankel transform
space describing the relationship between the generalized displacement vector v(n) and the
force vector F(n) for the nth layer.

The explicit derivation of KIn) corresponding to an arbitrary Fourier harmonic of a
three-dimensional poroelastic problem is extremely complicated and it is impossible to
achieve this task manually due to the fact that the inversion of eqn (23) involves a fully
populated 8 x 8 unsymmetric matrix whose elements involve rather complicated
expressions. However, this task, which needs to be performed only once, can be achieved
by using modern symbolic manipulation packages. In the present study, authors used
the computer algebra package Mathematica (Wolfram, 1988) to obtain K(n) explicitly.
Mathematica results in extremely lengthy and complicated expressions for elements of K(n)
which have to be extensively manipulated and reduced to obtain more simplified expressions
to achieve a computationally efficient solution scheme. After lengthy manipulations, it is
found that K(n) is symmetric and its elements can be expressed as

1st Row:

where

k ll = (cdn + l)(dlXl -d2X2) -4rJ. 2n (d3XI -d4 X3)

k l2 = 0, k l3 = (rJ.L-l)(d1XI-d2X2)+~

k l4 = 15 1 (rJ.~n - I)(d6 X2 - dsXI - 4rJ. 1n rJ.2nX3) + 15 2k l I

k lS = 2d7 Xl -2rJ.2n(2d j XI -d2X2 +dS X3)

k l6 = 0, k l7 = 2(x~n -1)[d4 X3 -d3 Xd

k l8 = 215] [rJ. 2n (d2XI +d6 X3) -d7 X2] +15 2 k ls

(28)

(29)

(30)

(31 )

(32)

(33)

(34)

(36)

(38)

(39)

(40)
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and ([i(i = 1. 4), c, 1] and 6i(i = 1,2) are defined in eqns (86) and (87) in the Appendix.

2nd Row:

1541

(41 )

(42)

k _ _ ~ (:X~n + 1)
22 - j1s 0 '

(:Xl" -1)
(43)

k 2i = 0, i = 1,3,4,5,7,8.

3rd Row:

(44)

k" = (:x~"-I)(d6XI-d5X2)-4:X2,,d4X, (45)

k '4 = (:xL -1){6[ (d l X2 -d2XI) +b2(d l XI -d2X2)} -4:x2"b l d3X3 (46)

k'5 = -k I7 , k 36 =0, k 37 = 2:X2" (d2X2+d,X3)-2d7XI (47)

k3~ = 2()1 [:X2"d l X3 - (:xL -1)d3 X2]+b 2 k 3 ,. (48)

4th Row:

(49)

(50)

(51 )

where

(52)

(53)

(54)

(55)

5th Row·

(56)

6th Row:

(57)

7th Row:

(58)
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8th Row:
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(59)

It is noted that the layer stiffness matrix K(n) is a function of the layer thickness, the
layer material properties, the Laplace and Hankel transform parameters s and ~. Only
negative exponentials that decrease rapidly with increasing ~, sand hn are involved in kij' It
should be noted that relationships between kijs [e.g. eqns (56)-(59)] can also be derived on
the basis of the physical behaviour of the system since each kij represents a component of a
generalized force vector due to a generalized displacement vector equal to a unit vector.
When compared to the stiffness matrix method proposed by Waas (1972), the K(n) obtained
from the present method is exact and do not involve any approximations in the derivation.

For the underlying half-space, due to the regularity condition at z -+ 00, the
general solutions involve only four arbitrary coefficients in the vector c(n), i.e.
B~+I),D~+I),F;::+I) and H~~+I). The stiffness matrix of the bottom half-space can be
expressed as

F(lV+ I) = K(N+ I)U(fH I) (60)

where

U(lV+I) = <V(N+I)(~,Z.'V+I,S»T (61)

F(lv+I) = <-f(N+I)(~,ZN+j,S»T (62)
and

K(N+I) - [,I(] (63)- symm. ij 4x4'

The elements in the half-space stiffness matrix can be expressed as

(64)

(65)

(66)

(67)

(68)

where

(69)

It is noted that exponential terms of ~ and s are not involved in the expression of K(N+ 1)

and its elements depend on the material properties of the underlying half-space, the Laplace
and Hankel transform parameters s and ~, respectively. The stiffness matrix K(N+ I) of the
underlying half-space exactly satisfies all the governing equations.



Quasi-statics of a multi-layered poroelastic medium 1543

GLOBAL STIFFNESS MATRIX

The global stiffness matrix of a multi-layered half-space is assembled by using the layer
and half-space stiffness matrices together with the continuity conditions of tractions and
fluid flow at layer interfaces. For example, the continuity conditions at the nth interface
can be expressed as

(70)

where (11) is identical to (defined in eqn (13) with superscript "n" denoting the layer number
and

in which

T (I1) - I [.;;, (T(I1) + T(I1») .;;, (T(I1) T(I1»)]
I - 2: .fl m+ I I'm Om - eft m-l rm - Om

T (I1) - I [.;;, (T(I1) + T(I1») + .;;, (T(I1) T(I1»)]
2 -2 Jl m +l I'm Om ..:nm-l rm- Om

(71)

(72)

(73)

(74)

(75)

where T);;1(i = r, e, z) and Q~;) denote the mth Fourier harmonic of the tractions and fluid
source applied at the nth interface, respectively.

The consideration of eqn (70) at each layer interface together with eqns (27) and (60)
results in the following global equation system

EitJ
Vii) T(l)

K(2) V (2) T(2)

(76)

ra V(N) T(N)

K(N+1l V (N+I) T(N+I)

The global stiffness matrix of eqn (76) is a well-conditioned symmetric matrix and has
a band width equal to 8. It is naturally constrained against rigid body displacements due
to the presence of K(N+ I). If a half-space is not present at the bottom then the bottom plane
at z = ZN has to be restrained to eliminate the rigid body displacements. The number of
unknowns in the final equation system, i.e. eqn (76) is equal to 4(N+ I) which is nearly
one-half of that corresponding to the classical approach based on the solution of layer
arbitrary coefficients A~~), B~~) , ... , H~;). This reduction of the size of the final equation
system together with the symmetry makes the present scheme computationally more efficient
than the conventional scheme (Vardoulakis and Harnpattanapanich, 1986). Furthermore,
eqn (76) is invertible and numerically stable for very large values of ~.
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The Laplace-Hankel transforms of stresses and fluid discharge at the top and hottom
interfaces of a layer can be obtained by using eqns (9), (27) and (76). If displacements
and/or pore pressure within points of a layer are required then it is convenient to define a
set of fictitious planes through these points and consider these as additional layers. Alter­
natively, eqn (23) can be used to compute c(n) for a layer and thereafter compute dis­
placements and pore pressure at an arbitrary point within a layer using eqn (10). This,
however, may involve the inversion of numerically ill-conditioned matrices such as Rlnl for
large values of ~ and consequently loss of precision. Ifloads and/or fluid sources are applied
within a layer then fictitious interfaces are considered at the loading levels.

NUMERICAL RESULTS AND DlSCCSSION

Numerical scheme
Since eqn (76) yields the Laplace-Hankel transforms of displacements and pore pres­

sure at layer interfaces for discrete values of ~ and s, the response of the half-space is
determined by numerically evaluating the integrals appearing in eqn (9). The Laplace
inversion is carried out numerically and the integral with respect to ~ in eqn (9) is evaluated
by using numerical quadrature. A review of the literature indicates that the Laplace inver­
sion can be carried out very accurately (Piessens, 1975) by using the numerical Laplace
inversion method proposed by Stehfest (1970). The formula due to Stehfest is given by

In 2 N _ ( In 2)
fer) ~- L: c,J n-

t n ~ 1 t

whereJdenotes the Laplace transform offer) and

'.0 min(n.Nj2) kN/2 (2k)!
c = (_I)"+N.. I----

n k ~ [(n+ 1)/2J (N/2 - k)!k!(k -I )!(n -k)!(2k - n)!

(77)

(78)

and N is even. It is found that accurate time-domain solutions are obtained from eqn (77)
with N ? 6 for poroelasticity problems (Detournay and Cheng, 1988 and Rajapakse and
Senjuntichai, 1993). It is important to note that the Stehfest method is computationally
quite demanding although it is accurate. A more simple and computationally efficient
scheme is given by Schapery (1962) which can be expressed as

f(t) ~ [s11 ~ 05/1 (79)

whereJdenotes the Laplace transform offer) and s is the Laplace transform parameter.
A computer code based on the solution procedure described in the preceding sections

has been developed to investigate the quasi-static behaviour of a multi-layered poroelastic
half-space. The tasks performed by the computer code can be described as (I) the com­
putation and assembly of stiffness matrices corresponding to each layer and the underlying
half-space of a multi-layered poroelastic half-space to establish eqn (76) for specified values
of ~ and s corresponding to a given numerical Laplace inversion scheme; (2) the solution
of eqn (76) to obtain the interlayer displacement and pore pressure vectors in the Laplace·
Hankel transform space; (3) the evaluation of semi-infinite integrals with respect to (
defined in eqn (9) by applying an adaptive version of an extended trapezoidal formula with
a sampling interval of ,1~ = O. I and (4) the evaluation of the time-domain solutions by
using eqn (77) or (79). It should be noted that the determinant of the global stiffness matrix
is nonsingular along the integration axis of eqn (9) [i.e. real ~ axis for real values of s given
by eqns (78) and (79)).

The numerical stability of the global stiffness matrix in eqn (76) for increasing values
of ~ and s can be assessed by computing a condition number of the matrix (Cline er al.,
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Fig. 2. Comparison of condition numbers corresponding to stiffness matrix and conventional
method.

1979). Figure 2 presents L,-condition numbers (the multiplication of the first norm of a
matrix and the first norm of its inverse) with respect to ( for different values of s of the
final equation systems corresponding to the present stiffness method [i.e. eqn (76)] and the
conventional method based on the determination of layer arbitrary coefficients. The results
shown in Fig. 2 correspond to a layered system consisting of a poroelastic layer of unit
thickness (V(I) = 0.25, I'~l) = 0.35 and E(l) = 0.8) bonded to a poroelastic half-space
(1'(1) = 0.2, V~l) = 0.3 and E(l) = 0.6). In addition, j1(l)/j1(2) = 0.5 and /((1) = /((2). A coefficient
matrix of a linear equation system with a small condition number is considered as a well­
conditioned system whereas a large condition number indicates ill-conditioning. The
numerical results in Fig. 2 show that the global stiffness matrix of the present scheme has
a smaller condition number which either remains constant or decreases over a wider range
of values of transform parameters, ~ and s. The condition number of the coefficient matrix
corresponding to the conventional method is always higher than that of the global stiffness
matrix of eqn (76) and becomes extremely large for increasing values of ~ due to the
presence of mis-matching exponential terms in the coefficient matrix. The numerical stability
of the present stiffness matrix approach is clearly demonstrated by the solutions shown in
Fig. 2.

Table 1 presents a comparison of numerical solutions for vertical displacement and
vertical stress at the point (0, a) ofa homogeneous poroelastic half-space (v = 0.25, Vu = 0.35
and E = 0.8) due to a uniform vertical patch load of radius "a" applied at a depth z = a
below the free surface. The half-space is considered to be consisting of 10 layers of equal
thickness, h/a = 0.2, and an underlying half-space. Solutions obtained from the present

Table I. Comparison of vertical displacement and vertical stress of a homogeneous poroelastic half­
space (v = 0.25, v" = 0.35 and B = 0.8) due to a uniform vertical patch load of radius "a" and uniform

intensity.!; acting at depth z = a

2j1u,(0, a, r*)jf;a (J" (0, a+, I*)!f;
1* R&St Present study R&St Present study

(ella') (1993) Stehfest Schapery (1993) Stehfest Schapery
--_..__.----._-- ..__ •__...._--

10 6 0.9757 0.9757 0.9758 -0.7151 -0.7151 -0.7151
10-4 0.9771 0.9771 0.9775 -0.7154 -0.7154 -0.7155
O.oI 0.9891 0.9891 0.9910 -0.7181 -0.7181 -0.7179
0.1 1.0051 1.0051 1.0067 -0.7163 -0.7163 -0.7142
1.0 1.0271 1.0271 1.0291 -0.7059 -0.7059 -0.7068

10 1.0505 1.0505 1.0493 -0.7041 -0.7041 -0.7044
104 1.0635 1.0636 1.0635 -0.7040 -0.7040 -0.7040

t Rajapakse and Senjuntichai (1993).
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stiffness method are compared with the numerical solutions given by Rajapakse and Sen­
juntichai (1993) to verify the numerical stability and the accuracy of the present technique.
The solutions given by Rajapakse and Senjuntichai are obtained by numerically evaluating
the explicit solutions for quasi-statics of a homogeneous poroelastic half-space and do not
involve the application of the present matrix scheme. The two solutions are in excellent
agreement. Table 2 presents a comparison of elastostatic solutions corresponding to a layer
of unit thickness perfectly bonded to a half-space and subjected to uniform vertical pressure
of unit total force applied over a circular area of unit radius at the top surface. Exact
solutions (computed numerically) provided by Muki and Dong (1980) are used in the
comparison with the final solutions (t ---+ CfJ) from the present study. The general accuracy
of the solutions obtained from the present stiffness matrix method are confirmed through
these independent comparisons.

Numerical results for multi-layered poroelastic ha(f-space
The quasi-static response of a muti-layered poroelastic half-space under a selected set

of loadings is investigated in the numerical study. A layered system consisting of two
poroelastic layers bonded to an underlying poroelastic half-space is considered in all
numerical studies presented in this paper. The properties of the first layer are B(I) = 1.0,
v(l) = 0.25 and vSI ) = 0.5; for the second layer, B(2) = 0.8, V(2) = 0.25 and vS2

) = 0.35 and
for the underlying half-space, B(3) = 0.6, v(3) = 0.2 and vS3

) = 0.3. In addition, /P) / /1(1) = 1;
/1(3) / /1(1) = 2 and applied loadings and fluid discharges are assumed to be uniformly dis­
tributed over a circular area of radius"a".

Di~placement histories due to surface loadings. Time histories of displacements at the
origin (r = 0, Z = 0) due to uniform patch loadings of intensity fa applied at the top surface
are studied in this subsection. Problems of this nature are useful in the study of the
consolidation settlement of surface foundations. In the parametric study, the total thickness
of the two layers, h l +h2 , is equal to 2a and K(3)/K(2) = 0.5. A nondimensional time,
'I[ = c(2)t/a2l, in the range 10-6~ 'I ~ 104 is considered in the numerical study. Time
histories of nondimensional vertical displacement, u:,[ = 2/1(I)uz /foal, at the origin due to a
uniform vertical pressure are shown in Figs 3(a) and 3(c). Figures 3(b) and 3(d) present
nondimensional horizontal displacement, u~,[ = 2/1(I)uxlfoal, at the origin due to a uniform
horizontal pressure applied at the top surface. Numerical results presented in Fig. 3 indicate
that the general trend of the displacement histories are quite similar for both vertical and
horizontal loadings. The influence of permeability on the response is considered in Figs
3(a) and 3(b) by setting K(I)/K(2) = 0.001,0.01,0.1, 1.0 and 10 with hi = h2 = a. It can be
seen from these two figures that the ratio K(I)/K(2) has a significant influence on the con­
solidation process of a layered poroelastic half-space. As expected, the consolidation settle­
ment is first noted in the case of K'I)/K(2) = 10 whereas, for K(I)/K(21 = 0.001, it is observed
when 'I > 0.1. The earliest final solution is reached for K(I)/K(2) = 10 and the latest for
K(I)/K(2) = 0.001. This behaviour is due to the fact that the first layer is less permeable in the
latter case. Comparison of displacement histories in Figs 3(a) and 3(b) indicates that the
variation of the ratio K(l)/K(2) essentially results in a shift of the response profile in the
time scale. The numerical solutions in Figs 3(a) and 3(b) show identical initial and final

Table 2. Comparison of solutions for vertical displacement of a layered elastic half-space
(p'''!/pJ = 10. vilJ = Vi" = 0.3 and h, = 1.0) due to a uniform vertical patch load of intensity fa

applied at the top surface

2prL(0, z)
M & D (l980)t Present study

2pu)r, 0)
M & D (l980)t Present study

o
I
2
6

II

0.1948
0.1815
0.1264
0.0545
0.0312

0.1948
0.1813
0.1262
0.0542
0.0308

o
1
2
5

10

0.1948
0.1601
0.1089
0.0450
0.0216

0.1948
0.1600
0.1088
0.0448
0.0215

t M uki and Dong (1980).
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displacements since the material parameters, v, Vu and j1, and the thicknesses of the two
layers are the same for all values of K(I)/K(2).

The influence of layer thickness on the response is studied in Figs 3(c) and 3(d) for
five different values of the ratio h j /h2, i.e. hdh2 = 0.25, 0.5, 1,2 and 4. Note that the total
thickness of the two layers is 2a and K(I)/K(2) = 0.001. The initial displacements for different
values of hdh2 are different and their order of magnitude is identical to that of h1/h2• This
is a consequence of the fact that the undrained behaviour of poroelastic materials is mainly
governed by the undrained Poisson's ratio, therefore a higher ratio of h1/h2 means a lesser
undrained compressibility of the layered system since v~[) > V~2). The consolidation settle­
ments in all cases are initiated at almost identical time instants, i.e. after '[ > 0.1, and the
final settlement is first reached in the case where hdh2 = 0.25 (i.e. hl/a = 0.4 and h2/a = 1.6)
when '[ > 100. It is also found that the time to reach the final solution increases with
increasing values of h\/h2• These features are consistent with the fact that since
K(I)/K(2) = 0.001, the layered system becomes more impermeable for a higher ratio of hdh2 .

Final solutions are identical since elastic properties (drained) of the different layered systems
are identical and the consolidation process in all cases is completed for '[ > 1000.

Time histories of displacement and pore pressure due to fluid sink. The next set of
solutions corresponds to problems involving fluid withdrawal from layered poroelastic
media. Problems of this nature are useful in the study of settlement due to groundwater
withdrawal, energy resource explorations, etc. A circular fluid sink of uniform intensity qo
is located at the center of the second layer of the layer system defined previously. The sink
is at a depth z = lOa below the free surface. In the numerical study, the permeability of the
first layer and the half-space is assumed to be equal, i.e. K(I) = K(3l, and the ratio K(2) /K(I) is
varied from 1 to 100. In addition, the thickness of the second layer is assumed to vary
between a and 4a. A nondimensional time, '2 where '2 = c(l)t/a2

, is used in the fluid sink
problem. Time histories of nondimensional vertical displacement, u:q [ = c(l)uz /qoa 2

], at the
origin for different values of K(2) /K([) and h2 are presented in Figs 4(a) and 4(b), respectively,
for 10-2

~ '2 ~ 104
. It is found that the displacement at this point is higher than that at the

point (0, lOa) at all time instants. Similar behaviour was also observed in the numerical
solutions reported by Rajapakse and Senjuntichai (1993) for the case of a buried patch
fluid sink in a homogeneous poroelastic half-space. The solutions presented in Figs 4(a)
and 4(b) indicate that the surface settlement in all cases is initially zero and increases rapidly
with time during the period I < '2 < 100. Final solutions in all cases are reached when
'2 > 1000. Figures 4(c) and 4(d) show time histories of nondimensional pore pressure,
P:[ = c(l)p/2j1(l)qoa], at the center of the patch sink (r = 0, z = lOa) for different values of
K(2)/K([) and h2, respectively, for 10-3 ~ '2 ~ 103. The initial pore pressure is zero and suction
is subsequently developed at this point. Final values for suction are obtained after '2 > 100.
It is noted that less suction is developed due to a fluid sink in a more permeable layered
system; i.e. for higher values of K(2)/K(l) in Fig. 4(c) and for higher values of h2 in Fig. 4(d).
It can be argued that higher suction developed in a layered system results in higher stresses
in the solid matrix (effective stresses) and consequently larger solid strains. Therefore, the
solutions presented in Figs 4(a) and 4(b) indicate that the vertical displacement decreases
with increasing values of K(2)/K(l) and h2, respectively.

Pore pressure andfluid discharge profiles along the vertical axis. Nondimensional pore
pressure, P:[ = p/fo], along the vertical axis due to a vertical patch load applied at the top
surface are shown in Figs 5(a) and 5(b) for different values of K(l)/K(2) and h[/h2, respectively,
for time instants '[ = 0.001 and 1. It is found that no suction is developed along the z-axis
due to a vertical surface load and excess pore pressure becomes insignificant for z > 4a.
The notable feature is that a discontinuity in the slope of the profiles is observed at the
interfaces, i.e. at z/a = 0.4 for h1/h2 = 0.25, at z/a = 1 for hdh2 = 1 and at z/a = 1.6 for
hdh2 = 4. This is due to the fact that since the permeability of the two layers are different
a discontinuity exists in the slope of the pore pressure profiles at the interfaces. A small
discontinuity also exists at the interface between the second layer and the half-space (i.e. at
z/a = 2.0) since the permeability of the two media are not the same (K(3)/K(2) = 0.5). Initially
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Fig. 5. Pore pressure along the z-axis due to a vertical patch load at the top surface.

('1 < 0.001), a very large pore pressure is developed near the top surface resulting in a very
high gradient of pressure in the region 0 < z/a < 1. Pore pressure beneath the first layer
decreases with depth in all cases and is nearly identical for z/a > 2. As expected, the rate of
pore pressure dissipation increases with increasing values of permeability. For example, at
'I = 1, excess pore pressure is nearly dissipated in the first layer for K(I)/K(2) = 10 whereas
appreciable pore pressure is noted in the first layer if K(I)/K(2) = 0.1 for all values of hj /h2 •

Excess pore pressure diminishes to negligible levels when 'I > 10 and 100 for K(I)/K(2) = 10
and 0.1, respectively.

Profiles of nondimensional pore pressure, P:, and fluid discharge, q:q[ = qz!qo], along
the z-axis due to a patch fluid sink at a depth z = lOa below the free surface are shown in Figs
6(a) and 6(b), respectively, for different time instants. Numerical solutions are presented for
8 ~ z/a ~ 12 and for K(2)/K(1) = 1 and 10 when h2 = 2a. Note that K(3) is equal to K(I) in this
case. As expected, suction profiles shown in Fig. 6(a) indicate that the maximum value of
suction is noted at the level of the sink (i.e. z/a = 10) for all values of '2 and the suction is
higher for K(2) /K(1) = 1 when compared to K(2) /K(I) = 10. Naturally, the pore pressure profiles
show a singularity (kink) at z = lOa due to the fluid sink applied at this level. A discontinuity
in the slope of the P: profiles is observed at layer interfaces, i.e. at z/a = 9 and 11 for
K(2)/K(I) = 10. Such a discontinuity does not exist for 1«2) = K(I). Final values for suction are
attained when '2 > 1000. Fluid discharge profiles shown in Fig. 6(b) for '2 = 0.1 and 1000
indicate that a unit discontinuity exists at the level of applied patch fluid sink (z = lOa). A

0.60.30.0-0.3

8,...-----........-----.

~ 10

0.00-0.25-0.50
12 +-----.---.....,................I.....I..L..l
-0.75

(a) (b)

Fig. 6. Pore pressure and fluid discharge along the z-axis for a patch fluid sink.



Q"uasi-statics of a multi-layered poroelastic medium 1551

discontinuity in the slope of the discharge profiles is also noted at zla = 9 and II when
K(2)IK(1) = 10 whereas, for K(2) = K(1), discharge profiles are smooth along the z-axis. This
behaviour is similar to that observed in Fig. 6(a). Initially ('2 < 0.1), higher discharge is
developed in the case where K(2) IK(l) = 10. As time increases, the'discharge for K(2) = K(I)

increases and reaches a final state when '2 > 1000. However, the discharge profile for
K(2) IK(1) = lOis nearly time-independent. The fluid discharge corresponding to both values
ofK(2)IK(l) becomes negligible after Izla-IOI > 2.

CONCLUSIONS

An exact stiffness matrix method based on three-dimensional analytical solutions of a
homogeneous poroelastic medium is presented to study the quasi-static response of a multi­
layered poroelastic half-space with compressible constituents. Displacements and pore
pressure at layer interfaces in the Laplace-Hankel transform space are considered as the
basic unknowns in the analysis. Explicit solutions for stiffness matrices of a layer with a
finite thickness and a half-space are presented. These stiffness matrices need to be derived
only once and can be applied to study the response of any horizontally layered poroelastic
medium. The time domain solutions can be obtained by applying the numerical scheme
proposed by Stehfest (1970) or Schapery (1962) for Laplace inversion and applying direct
numerical quadrature to evaluate the Hankel transform inversion integrals. The present
method has the advantage that the size of the final equation system is nearly one-halfof that
corresponding to the conventional matrix approach based on layer arbitrary coefficients. In
addition, unlike the coefficient matrix of the conventional method, the global stiffness
matrix of the present method is symmetric, numerically stable and well-conditioned for the
large values of transform parameters and has a band width equal to eight. Selected numerical
results presented in this study indicate that the response of a layered system is governed by
many parameters (layer thickness, material parameters, etc.) and it is difficult to identify
the influence of individual parameters separately on the response. The present method can
be used to compute the kernel functions (Green's functions) required in the application of
boundary integral equation methods for a multi-layered poroelastic half-space. It can also
be used to verify the accuracy of approximate methods such as the finite element method
and other numerical techniques that can be applied to study the consolidation problems
involving layered poroelastic media.
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APPENDIX

The matrices Rand 8 in eqns (10) and (II), respectively, are given by

R = [R, : R2 ]

where

-2jla3'102e'= - 2jla3'1°2e - r= atze{z -alze-"

0 0 0 0

R, = a2 < a2 .
2jla3'10 ,eF -2jla3'1°l e -Y= -(a,z- T)e" -(a,z+ T)e-"

2jla3'1e" 2jla3'1e -" -2jla4'1e" - 2jla,'1e -'z

e" e-{z -e"

-"'jI [" e-'z e" e-"
R2 ="2

_e(,z e-(z ee= _e-ez

0 0 0 0

[-''''';'''''' 4jla3~'10,e-Y' (2al ~z-I)e"
(2",I'; Ij," 1

0 0
8, = jl

-2(a, ~z-a,)e" 2(a l ~z+a,)e-'Z4jla3 ~'102 e" 4jla3~'102e-"

-2aJo,e'" 2aJo,e-Y' 2a,02 e" -2a,02e-"

(AI)

(A2)

(A3)

(A4)

(A5)
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and

-2c;e-<'

-c;e-"

o
2c;e"

o

2c;e-" 1
-c;e-'Z

2~e-"

o

(A6)

I (3-4vJ
a, = 2(l-2vJ' a, = 2(l-2vu) '

B(I+vu)(l-v) (l-vJ
a3= 3(vu-v) ,a4=(1_2vu) (A7)

(A8)


